3D-3D Coordinate Transforms

An excellent reference is the book “Introduction to
Robotics” by John Craig
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3D Coordinate Systems

e Coordinate frames
— Denote as {A}, {B}, etc

— Examples: camera, world, model 4
e The pose of {B} with respect to / .
{A} is described by {A}

— Translation vector t

— Rotation matrix R

e Rotation is a 3x3 matrix LTI

— It represents 3 angles R= YR PR Y

EGGN 512 Computer Vision Colorado School of Mines, Engineering Division  Prof. William Hoff



Rotations in 3D

e Rotation about the X axis X 1 0 0
z "y |=|0 cosf, -sind,
@ Points toward me B 7 O Sln ex COS HX
® Points away from
y me
X
e Rotation about the Y axis °X cosd, 0 sing,
"yl=| O 1 0
—sind, 0 cosé,

z

T x
o
N

y

e Rotation about the Z axis x| (cos¢, =—sing, 0

y y|=|sing, cosd, O
°7 0 0 1
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z
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3D Rotation Matrix

We can concatenate the 3 rotations in any
order to yield a single 3x3 rotation matrix
— e.g,R=R;RyRy AR=1Ty Ty Ty

This is a rotational transformation of
frame A to frame B
— I'll use the leading subscript to indicate “from”
— I'll use the leading superscript to indicate “to”

We can rotate a vector in frame A to / S
obtain its representation in frame B (A}
B By A
v=,R "v
. . . B \! Bp ) A
Note: asin 2D, rotation matrices are AR =l,R) =R

orthonormal so the inverse of a rotation
matrix is just its transpose
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3D Rotation Matrix

The elements of R are direction cosines Xno-Xg ¥YarXg
#the projections of unit vectors from one BR—|% 0. O .0
rame onto the unit vectors of the other AR T A ¥B ¥A YB
frame) Rn2o Va2,
To see this, apply R to a unit vector
V \-"L Y 1 A
¥a. Yu "1 BT = /XA
2 ¥ Y3,
= X By
So the columns of R are the unit vectors A A
of A, expressed in the B frame
As‘( T
And the rows of R are the unit vectors of it
{B} expressed in {A} = Ye
Az T
B
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ax
RX

Rz

Matlab: Creating a Rotation Matrix

0.1; ay = -0.2; az = 0.3; % radians

[ 1 0 0; O cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
[ cos(ay) O sin(ay); 0 1 0; -sin(ay) 0 cos(ay)];
[ cos(az) -sin(az) 0; sin(az) cos(az) 0; 0 O 1];

Rz * Ry * RX

Rx * Ry * Rz
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Matlab: Creating a Rotation Matrix

0.1; ay = -0.2; az = 0.3; % radians

[ 1 0 0; O cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
[ cos(ay) O sin(ay); 0 1 0; -sin(ay) 0 cos(ay)];
[ cos(az) -sin(az) 0; sin(az) cos(az) 0; 0 O 1];

Rz * Ry * RX

0.9363 -0.3130 -0.1593
0.2806  0.9447 -0.1538
0.1987  0.0978  0.9752 | Rotationsare

not the same
Rx * Ry * Rz K////

0.9363 -0.2896  -0.1987
0.2751 0.9564 -0.097/8
0.2184 0.0370 0.9752
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Transforming a Point

We can use R,t to transform a point
from coordinate frame {B} to frame

{A} A A B
P="R ®P+t

Where

— AP is the representation of P in
frame {A}

— BPis the representation of P in
frame {B}

1A}

Note

t is the translation of B's origin in the A frame, “t,,
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Homogeneous Coordinates

e We can represent the transformation with a single matrix
multiplication if we write P in homogeneous coordinates
— This simply means to append a 1 as a 4t element
— If the 4t element becomes # 1, we divide through by it

The leading superscript X sX
indicates what coordinate Y Y
frame the point is —@p _ _
represented in Z sZ
* Then 1 S

S
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S
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General Rigid Transformation

A general rigid transformation is a
rotation followed by a translation

Can be represented by a single
4x4 homogeneous transformation
matrix

A note on notation:

P = AH P

Cancel leading subscript with
trailing superscript
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B A B
RTP+7t Aorg
r-11 r-12 r-13 X0
I’21 I’22 r23 yO
r31 r-32 r33 Z0
O 0 0 1

[ X+, Y + a2 + X,

r.21)( + r.22y + r.232 + yO

X+, Y + M2+ Z,
1
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Example

* In coordinate frame A, point P is (1,0,1)

e Frame Bis located at (0,0,10) and is rotated 180 degrees about the
X axis with respect to frame A

e Whatis point P in frame B?
b}
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EGGN 512 Computer Vision Colorado School of Mines, Engineering Division  Prof. William Hoff

LIV
A



} o © ° A ]

H ? = o ° -\ o |

N A 39 O o | ' |
L)

EGGN 512 Computer Vision Colorado School of Mines, Engineering Division

Prof. William Hoff



Matlab: Transforming a point

% Construct 4x4 transformation matrix to transform A to B
RAB=[100; O0-10; 00 -1] % 3x3 rotation matrix
tAorg B = [O; 0O; 10] % translation (origin of A in B)

HAB=|[ RAB tAorg B; % H A B means transform A to B
O O O 1]

PA=1]1; 0; 1; 1]} % A point In the A frame

PB=HAB®PA % Convert to B frame
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Inverse Transformations

e The matrix inverse is the inverse transformation
A B -1
g H = (A H)

e Note — unlike rotation matrices, the inverse of a full 4x4
homogeneous transformation matrix is not the transpose

AH = (BH)T

e
e What is the transformation inverse? /-1;

“H=Y"K \“"m} \LS( £ e n

) )
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Transformations

e (Can think of a transformation as:
— A description of frame {A} relative to frame {B}

— A transform mapping a point in the {A} frame to its
representation in the {B} frame

e Can concatenate transformations together

— Leading subscripts cancel trailing superscripts

2H=%H H "H=2HSH &H, etc

et
A /Y/'
o3
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Order of Rotations

QRXYZ(HX 19\("92): Rz(ez) RY (9\() Rx (Hx)
cz —-sz Oyfcy O sy)(1 0 O
=lsz cz O O 1 0|0 cx -—sx

e XYZ fixed angles

— Start with {B} coincident
with {A}. First rotate {B}
about x, by angle 6,, then 0 0 1){-sy 0 cy){0 sx cx
rotate it about y, by 6, where
then rotate about z, by 0,.

— Each rotation takes place
relative to the fixed frame

{A}
e The order matters

— Matrices are multiplied in e
the order Rz Ry Rx y

— Rz Ry Rx order not same
as Rx Ry Rz, etc

cx = cos(6y ), sy =sin(é, ), etc

CZCy CZSySX—SZCX CZSyCX + SZSX
*Ryz(6,8,,6,)=|SzCy SZSySX+CzCX SZSYyCX —CZSX
cy sx Cy X

I/SA\RXYZ (HX ’ 0Y ’ 02 ) # I?RZYX (ex ’ gY ’ gZ )
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Small Angle Approximation

e If rotation angles are small
— Eg., object is rotating slowly in a video sequence

— Or we are looking at the effect of small angle perturbations on the
rotation

 Then rotation matrix simplifies

cosd, cosd, coséd,siné, sind, —sind, cosd,  cosé, sin @, cosb, +sin g, sin b,
*Ryz(0y.6,,6,)=]sind,zcosé, sind,zsiné, siné, +cosh, cosd, sind, sinb, cosé, —cosé, sin b,
—siné, cosd, sin 8, cosé, cos b,

e Lletcos @=1,sin @= Gfor small &

1 -6, 6,
QRXYZ(QX’QY’QZ)z 0, 1 — 0y
-6, 0, 1
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Example

* A robot vehicle has a range sensor, which observes a point P. Where is P in

world coordinates?
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clear all

close all

HVw=[1 0 O 5;
0-1 O 0;
0O 0 -1 1;
O 0 O 1]

HSV=[O0O 0 1 1;
1 0 O 0;
O 1 0 -2;
O 0 O 1]

PS=1]0; 4; 10; 1]

PW=HVW*HSV=*PS

WE G ¢
w o
-5 P = -}

\
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Possible Combinations for Rotations

 There are 12 possible combinations for rotations about the fixed axes:

- RXRYRZ
- RXRZRY
- RYRXRZ
- RYRZRX
— R,R\R
@% We will use this
Z Y X convention in this course
- RXRYRX
- RszRx
— RyR,R, e So for a given 3D rotation, the values

— R\R,R, of the 3 angles depends on the
— R.R.R rotation convention you use
VAR GAY A

— R.R.R  However, a given 3D rotation always
Y 7 . . .
has a unique rotation matrix
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Euler angles — a different rotation convention

e ZYX Euler angles

— Start with {B} coincident with {A}. First rotate {B} about z; by angle 0,
then rotate it about y; by 0,, then rotate about x; by 0.

— Each rotation takes place relative to the moving frame {B}

— There are 12 angle set conventions for Euler angles
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Recovering angles from rotation matrix

e Given a 3x3 rotation matrix, h, fy I
and given a certain angle AR 0. 0. 0.)=|r r r
set convention, you can 8 XYZ( X Z) a2 B
recover the three angles I3 Ty I3

e Two solutions exist, but can

restrict 0, to -90° to +90° 0, = atan2(— R r221) ;;;);YZ
6, =atan2(r,, /cy, r,/c angles
e If0,=%90°, we have a ‘ (21 Yol y) I
degenerate solution: Let 0y = atan2(r32 /cy, r33/CY)
0, =0°

If 6, =+90: 6, =atan2(r,,r,,)
If 6,=-90: 6, =-atan2(r,,r,,)
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Equivalent Angle-Axis

A general rotation can be expressed as a

rotation O about an axis k

A

k.kvé+co
R (6)=] kkvO+k,sO

where

k=(k,k,.kJ

x1 Ny 1 Rz

kkkvO-k,sO kkvo+kso

kykyv6’+c0

kkvO—k,s@ kkyvo+kso

cld=cos@,sfd=sin@,vl =1-cosd

k,k,v&—k,so
k,k,vd+cé

The inverse solution (i.e., given a rotation
matrix, find k and O):

The product of the unit vector k and angle
0,0=0k= (0, o, w,)is a minimal

representation for a 3D rotation

1B}

1A}

6’=acos(r11+ o + I _l)
2

I‘32—I‘23

k =— h,—T,
2sing| ©°
r21_"12
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Note that (-k,-6)
is also a solution



