3D-3D Coordinate Transforms

An excellent reference is the book "Introduction to Robotics" by John Craig

3D Coordinate Systems

- Coordinate frames
 - Denote as {A}, {B}, etc
 - Examples: camera, world, model
- The pose of {B} with respect to {A} is described by
 - Translation vector t
 - Rotation matrix R
- Rotation is a 3x3 matrix
 - It represents 3 angles

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

Rotations in 3D

Rotation about the X axis

- Points toward me⊗ Points away from

$$\begin{pmatrix} {}^{B}x \\ {}^{B}y \\ {}^{B}z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{X} & -\sin\theta_{X} \\ 0 & \sin\theta_{X} & \cos\theta_{X} \end{pmatrix} \begin{pmatrix} {}^{A}x \\ {}^{A}y \\ {}^{A}z \end{pmatrix}$$

Rotation about the Y axis

$$y \longrightarrow z$$

 $\begin{pmatrix} {}^{B}x \\ {}^{B}y \\ {}^{B}z \end{pmatrix} = \begin{pmatrix} \cos\theta_{Y} & 0 & \sin\theta_{Y} \\ 0 & 1 & 0 \\ -\sin\theta_{Y} & 0 & \cos\theta_{Y} \end{pmatrix} \begin{pmatrix} {}^{A}x \\ {}^{A}y \\ {}^{A}z \end{pmatrix}$

Rotation about the Z axis

$$\begin{pmatrix} {}^{B}x \\ {}^{B}y \\ {}^{B}z \end{pmatrix} = \begin{pmatrix} \cos\theta_{Z} & -\sin\theta_{Z} & 0 \\ \sin\theta_{Z} & \cos\theta_{Z} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} {}^{A}x \\ {}^{A}y \\ {}^{A}z \end{pmatrix}$$

3D Rotation Matrix

- We can concatenate the 3 rotations in any order to yield a single 3x3 rotation matrix
 - e.g., $\mathbf{R} = \mathbf{R}_{Z} \mathbf{R}_{Y} \mathbf{R}_{X}$
- This is a rotational transformation of frame A to frame B
 - I'll use the leading subscript to indicate "from"
 - I'll use the leading superscript to indicate "to"
- We can rotate a vector in frame A to obtain its representation in frame B

$$^{B}\mathbf{v} = {}^{B}_{A}\mathbf{R} \quad ^{A}\mathbf{v}$$

 Note: as in 2D, rotation matrices are orthonormal so the inverse of a rotation matrix is just its transpose

$${}^{B}_{A}\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

$$\binom{B}{A}\mathbf{R}^{-1} = \binom{B}{A}\mathbf{R}^T = \binom{A}{B}\mathbf{R}$$

3D Rotation Matrix

The elements of **R** are direction cosines (the projections of unit vectors from one frame onto the unit vectors of the other frame)

$${}^{B}_{A}\mathbf{R} = \begin{pmatrix} \hat{\mathbf{x}}_{A} \cdot \hat{\mathbf{x}}_{B} & \hat{\mathbf{y}}_{A} \cdot \hat{\mathbf{x}}_{B} & \hat{\mathbf{z}}_{A} \cdot \hat{\mathbf{x}}_{B} \\ \hat{\mathbf{x}}_{A} \cdot \hat{\mathbf{y}}_{B} & \hat{\mathbf{y}}_{A} \cdot \hat{\mathbf{y}}_{B} & \hat{\mathbf{z}}_{A} \cdot \hat{\mathbf{y}}_{B} \\ \hat{\mathbf{x}}_{A} \cdot \hat{\mathbf{z}}_{B} & \hat{\mathbf{y}}_{A} \cdot \hat{\mathbf{z}}_{B} & \hat{\mathbf{z}}_{A} \cdot \hat{\mathbf{z}}_{B} \end{pmatrix}$$

To see this, apply **R** to a unit vector

• So the columns of
$$\mathbf{R}$$
 are the unit vectors
$$\begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & \mathbf{r}_{13} \\ \mathbf{r}_{21} & \mathbf{r}_{32} & \mathbf{r}_{33} \end{pmatrix} \begin{pmatrix} \mathbf{l} \\ \mathbf{o} \\ \mathbf{o} \end{pmatrix} = \begin{pmatrix} \mathbf{r}_{11} \\ \mathbf{r}_{21} \\ \mathbf{r}_{31} \end{pmatrix} = \begin{pmatrix} \mathbf{s} \\ \mathbf{x}_{A} \end{pmatrix} \begin{pmatrix} \mathbf{s} \\ \mathbf{\hat{y}}_{A} \end{pmatrix} \begin{pmatrix} \mathbf{s} \\ \mathbf{\hat{z}}_{A} \end{pmatrix}$$

of A, expressed in the B frame

$$_{A}^{B}\mathbf{R}=\left(\left(egin{array}{c} ^{B}\hat{\mathbf{x}}_{A} \end{array}
ight) \quad \left(egin{array}{c} ^{B}\hat{\mathbf{y}}_{A} \end{array}
ight) \quad \left(egin{array}{c} ^{B}\hat{\mathbf{z}}_{A} \end{array}
ight)
ight)$$

$$_{A}^{B}\mathbf{R}=\left(\left(egin{array}{cccc} & {}^{A}\hat{\mathbf{x}}_{B}^{T} & \ & {}^{A}\hat{\mathbf{y}}_{B}^{T} & \ & {}^{A}\hat{\mathbf{z}}_{B}^{T} & \end{array}
ight)$$

Matlab: Creating a Rotation Matrix

```
ax = 0.1; ay = -0.2; az = 0.3; % radians
Rx = [ 1 0 0; 0 cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
Ry = [ cos(ay) 0 sin(ay); 0 1 0; -sin(ay) 0 cos(ay)];
Rz = [ cos(az) -sin(az) 0; sin(az) cos(az) 0; 0 0 1];
R = Rz * Ry * Rx
```

$$R = Rx * Ry * Rz$$

Matlab: Creating a Rotation Matrix

```
ax = 0.1; ay = -0.2; az = 0.3; % radians
Rx = [1 0 0; 0 \cos(ax) - \sin(ax); 0 \sin(ax) \cos(ax)];
Ry = [\cos(ay) \ 0 \ \sin(ay); \ 0 \ 1 \ 0; \ -\sin(ay) \ 0 \ \cos(ay)];
Rz = [\cos(az) - \sin(az) \ 0; \sin(az) \cos(az) \ 0; \ 0 \ 0 \ 1];
R = Rz * Ry * Rx
R =
    0.9363 - 0.3130 - 0.1593
    0.2896 0.9447 -0.1538
                                         Rotations are
    0.1987 0.0978 0.9752
                                         not the same
R = Rx * Ry * Rz
R =
                        -0.1987
    0.9363 - 0.2896
    0.2751
           0.9564
                        -0.0978
    0.2184 0.0370
                      0.9752
```

EGGN 512 Computer Vision Colorado School of Mines, Engineering Division Prof. William Hoff

Transforming a Point

 We can use R,t to transform a point from coordinate frame {B} to frame {A}

$$^{A}\mathbf{P}=_{B}^{A}\mathbf{R}^{B}\mathbf{P}+\mathbf{t}$$

- Where
 - AP is the representation of P in frame {A}
 - BP is the representation of P in frame {B}

- Note
 - \mathbf{t} is the translation of B's origin in the A frame, ${}^{A}\mathbf{t}_{Borg}$

Homogeneous Coordinates

- We can represent the transformation with a single matrix multiplication if we write P in homogeneous coordinates
 - This simply means to append a 1 as a 4th element
 - If the 4th element becomes ≠ 1, we divide through by it

Then

$${}^{B}\mathbf{P} = \mathbf{H} {}^{A}\mathbf{P}, \quad \text{where } \mathbf{H} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

General Rigid Transformation

- A general rigid transformation is a rotation followed by a translation
- Can be represented by a single
 4x4 homogeneous transformation
 matrix
- A note on notation:

$$^{A}\mathbf{P} = ^{A}\mathbf{H}^{B}\mathbf{P}$$

Cancel leading subscript with trailing superscript

$${}^{B}\mathbf{P} = {}^{B}_{A}\mathbf{R} {}^{A}\mathbf{P} + {}^{B}\mathbf{t}_{Aorg}$$

$${}^{B}_{A}\mathbf{H} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & x_{0} \\ r_{21} & r_{22} & r_{23} & y_{0} \\ r_{31} & r_{32} & r_{33} & z_{0} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{B}\mathbf{P} = {}^{B}_{A}\mathbf{H} {}^{A}\mathbf{P} = \begin{pmatrix} r_{11}x + r_{12}y + r_{13}z + x_{0} \\ r_{21}x + r_{22}y + r_{23}z + y_{0} \\ r_{31}x + r_{32}y + r_{33}z + z_{0} \\ 1 \end{pmatrix}$$

Example

In coordinate frame A, point P is (1,0,1)

• Frame B is located at (0,0,10) and is rotated 180 degrees about the

x axis with respect to frame A

What is point P in frame B?

JANT BH = BR BE BH BP

BH =
$$\left[\frac{BR}{AR}\right]^{B}$$
 BR = $\left[\frac{BR}{AR}\right]^{B}$ BR = $\left[\frac{R}{AR}\right]^{B}$ BR =

Matlab: Transforming a point

Inverse Transformations

The matrix inverse is the inverse transformation

$${}_{B}^{A}\mathbf{H} = \left({}_{A}^{B}\mathbf{H}\right)^{-1}$$

 Note – unlike rotation matrices, the inverse of a full 4x4 homogeneous transformation matrix is not the transpose

$${}_{B}^{A}\mathbf{H}\neq\left({}_{A}^{B}\mathbf{H}\right) ^{T}$$

What is the transformation inverse?

Transformations

- Can think of a transformation as:
 - A description of frame {A} relative to frame {B}
 - A transform mapping a point in the {A} frame to its representation in the {B} frame
- Can concatenate transformations together
 - Leading subscripts cancel trailing superscripts

$$_{A}^{C}\mathbf{H} = _{B}^{C}\mathbf{H} _{A}^{B}\mathbf{H}$$
 $_{A}^{D}\mathbf{H} = _{C}^{D}\mathbf{H} _{B}^{C}\mathbf{H} _{A}^{B}\mathbf{H}, \text{ etc}$

Order of Rotations

XYZ fixed angles

- Start with {B} coincident with {A}. First rotate {B} about \mathbf{x}_{A} by angle θ_{X} , then rotate it about \mathbf{y}_{A} by θ_{Y} , then rotate about \mathbf{z}_{A} by θ_{Z} .
- Each rotation takes place relative to the fixed frame {A}

The order matters

- Matrices are multiplied in the order Rz Ry Rx
- Rz Ry Rx order not same as Rx Ry Rz, etc

$$= \begin{pmatrix} cz & -sz & 0 \\ sz & cz & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} cy & 0 & sy \\ 0 & 1 & 0 \\ -sy & 0 & cy \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & cx & -sx \\ 0 & sx & cx \end{pmatrix}$$

where

$$cx = \cos(\theta_X)$$
, $sy = \sin(\theta_Y)$, etc

$${}_{B}^{A}R_{XYZ}(\theta_{X}, \theta_{Y}, \theta_{Z}) = \begin{pmatrix} cz \, cy & cz \, sy \, sx - szcx & cz \, sy \, cx + sz \, sx \\ sz \, cy & sz \, sy \, sx + czcx & sz \, sy \, cx - cz \, sx \\ -sy & cy \, sx & cy \, cx \end{pmatrix}$$

$${}_{B}^{A}R_{XYZ}(\theta_{X},\theta_{Y},\theta_{Z}) \neq {}_{B}^{A}R_{ZYX}(\theta_{X},\theta_{Y},\theta_{Z})$$

Small Angle Approximation

- If rotation angles are small
 - Eg., object is rotating slowly in a video sequence
 - Or we are looking at the effect of small angle perturbations on the rotation
- Then rotation matrix simplifies

$$\frac{{}_{A}^{A}R_{XYZ}(\theta_{X}, \theta_{Y}, \theta_{Z})}{{}_{B}^{A}R_{XYZ}(\theta_{X}, \theta_{Y}, \theta_{Z})} = \begin{pmatrix} \cos\theta_{Z}\cos\theta_{Y} & \cos\theta_{Z}\sin\theta_{Y}\sin\theta_{X} - \sin\theta_{Z}\cos\theta_{X} & \cos\theta_{Z}\sin\theta_{Y}\cos\theta_{X} + \sin\theta_{Z}\sin\theta_{X} \\ \sin\theta_{Z}z\cos\theta_{Y} & \sin\theta_{Z}z\sin\theta_{Y}\sin\theta_{X} + \cos\theta_{Z}\cos\theta_{X} & \sin\theta_{Z}\sin\theta_{Y}\cos\theta_{X} - \cos\theta_{Z}\sin\theta_{X} \\ -\sin\theta_{Y} & \cos\theta_{Y}\sin\theta_{X} & \cos\theta_{Y}\cos\theta_{X} \end{pmatrix}$$

• Let $\cos \theta \approx 1$, $\sin \theta \approx \theta$ for small θ

$${}_{B}^{A}R_{XYZ}(\theta_{X},\theta_{Y},\theta_{Z}) \approx \begin{pmatrix} 1 & -\theta_{Z} & \theta_{Y} \\ \theta_{Z} & 1 & -\theta_{X} \\ -\theta_{Y} & \theta_{X} & 1 \end{pmatrix}$$

Example

A robot vehicle has a range sensor, which observes a point P. Where is P in world coordinates?

VEH TO WORLD:

$$W R = R_{x}(180^{\circ}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 $W H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

$$R = R_{2}(40^{\circ})R_{1}(0^{\circ})R_{1}(40^{\circ}) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$${}_{5}^{V}H = \left(\begin{array}{c|c} & & & \\ & & \\ & & \\ \end{array}\right)$$

EGGN 512 Computer Vision Colorado School of Mines, Engineering Division Prof. William Hoff

```
clear all
close all
H_V_W = [ 1 0 0
    0 -1 0 0;
        0 0 -1
        0 0 0
                 1]
H_S_V = [ 0 0 1 ]
                1;
        1 0 0 0;
        0 1 0 -2;
                1]
P_S = [0; 4; 10; 1]
P_W = H_V_W * H_S_V * P_S
```

EGGN 512 Computer Vision Colorado School of Mines, Engineering Division Prof. William Hoff

Possible Combinations for Rotations

• There are 12 possible combinations for rotations about the fixed axes:

- $-R_{x}R_{y}R_{7}$
- $-R_XR_ZR_Y$
- $-R_{Y}R_{X}R_{Z}$
- $-R_YR_ZR_X$
- $-R_zR_xR_y$

 $-R_zR_yR_x$

We will use this convention in this course

- $-R_xR_yR_x$
- $-R_XR_ZR_X$
- $-R_YR_XR_Y$
- $-R_{\gamma}R_{Z}R_{\gamma}$
- $-R_{z}R_{x}R_{z}$
- $-R_zR_yR_z$

- So for a given 3D rotation, the values of the 3 angles depends on the rotation convention you use
- However, a given 3D rotation always has a unique rotation matrix

Euler angles – a different rotation convention

ZYX Euler angles

- Start with {B} coincident with {A}. First rotate {B} about \mathbf{z}_{B} by angle θ_{Z} , then rotate it about \mathbf{y}_{B} by θ_{Y} , then rotate about \mathbf{x}_{B} by θ_{X} .
- Each rotation takes place relative to the moving frame {B}

There are 12 angle set conventions for Euler angles

Recovering angles from rotation matrix

- Given a 3x3 rotation matrix, and given a certain angle set convention, you can recover the three angles
- ${}_{B}^{A}R_{XYZ}(\theta_{X}, \theta_{Y}, \theta_{Z}) = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$
- Two solutions exist, but can restrict θ_{y} to -90° to +90°
- If $\theta_{\gamma} = \pm 90^{\circ}$, we have a degenerate solution: Let $\theta_{7} = 0^{\circ}$

$$\theta_{Y} = \operatorname{atan2}\left(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}}\right) \qquad \text{for XYZ}$$

$$\theta_{Z} = \operatorname{atan2}\left(r_{21}/cy, r_{11}/cy\right) \qquad \text{angles}$$

$$\theta_{X} = \operatorname{atan2}\left(r_{32}/cy, r_{33}/cy\right)$$

If
$$\theta_{Y} = +90$$
: $\theta_{X} = \tan 2(r_{12}, r_{22})$
If $\theta_{Y} = -90$: $\theta_{X} = -\tan 2(r_{12}, r_{22})$

Equivalent Angle-Axis

• A general rotation can be expressed as a rotation θ about an axis **k**

$$R_{k}(\theta) = \begin{pmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{x}k_{y}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{x}k_{z}v\theta - k_{y}s\theta & k_{y}k_{z}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{pmatrix}$$
where

$$c\theta = \cos\theta, s\theta = \sin\theta, v\theta = 1 - \cos\theta$$

 $\hat{\mathbf{k}} = (k_x, k_y, k_z)^T$

- The inverse solution (i.e., given a rotation matrix, find \mathbf{k} and $\boldsymbol{\theta}$):
- The product of the unit vector \mathbf{k} and angle θ , $\omega = \theta \mathbf{k} = (\omega_{x'}, \omega_{y'}, \omega_{z})$ is a minimal representation for a 3D rotation

$$\hat{\mathbf{k}} = \frac{1}{2\sin\theta} \begin{pmatrix} \frac{r_{11} + r_{22} + r_{33} - 1}{2} \\ \frac{1}{r_{13} - r_{23}} \\ \frac{r_{13} - r_{31}}{r_{21} - r_{12}} \end{pmatrix}$$

Note that $(-\mathbf{k}, -\theta)$ is also a solution